日本綠測器MIDORI傾斜角度傳感器工作原理
一、傾角傳感器原理
綠測器MIDORI傾斜角度傳感器經(jīng)常用于系統(tǒng)的水平測量,從工作原理上可分為“固體擺”式、“液體擺”式、“氣體擺”三種傾角傳感器,下面就它們的工作原理進行介紹。
1、“固體擺”式慣件
固體擺在設計中廣泛采用力平衡式伺服系統(tǒng),如圖1所示,其由擺錘、擺線、支架組成, 擺錘受重力G和擺拉力T的作用,其合外力F為:(1)
其中,θ為擺線與垂直方向的夾角。在小角度范圍內(nèi)測量時,可以認為F與θ成線性關(guān)系。如應變式傾角傳感器就基于此原理。
2、“液體擺”式慣件
液體擺的結(jié)構(gòu)原理是在玻璃殼體內(nèi)裝有導電液,并有三根鉑電極和外部相連接,三根電極相互平行且間距相等,如圖2所示。當殼體水平時,電極插入導電液的深度相同。如果在兩根電極之間加上幅值相等的交流電壓時,電極之間會形成離子電流,兩根電極之間的液體相當于兩個電阻RI和RIII。若液體擺水平時,則RI=RIII。當玻璃殼體傾斜時,電極間的導電液不相等,三根電極浸入液體的深度也發(fā)生變化,但中間電極浸入深度基本保持不變。如圖3所示,左邊電極浸入深度小,則導電液減少,導電的離子數(shù)減少,電阻RI增大,相對極則導電液增加,導電的離子數(shù)增加,而使電阻RIII 減少,即RI>RIII。反之,若傾斜方向相反,則RI<RIII。
在液體擺的應用中也有根據(jù)液體位置變化引起應變片的變化,從而引起輸出電信號變化而感知傾角的變化。在實用中除此類型外,還有在電解質(zhì)溶液中留下一氣泡,當裝置傾斜時氣泡會運動使電容發(fā)生變化而感應出傾角的“液體擺”。
3、“氣體擺”式慣件
氣體在受熱時受到浮升力的作用,如同固體擺和液體擺也具有的敏感質(zhì)量一樣,熱氣流總是力圖保持在鉛垂方向上,因此也具有擺的特性。“氣體擺”式慣性元件由密閉腔體、氣體和熱線組成。當腔體所在平面相對水平面傾斜或腔體受到加速度的作用時,熱線的阻值發(fā)生變化,并且熱線阻值的變化是角度q或加速度的函數(shù),因而也具有擺的效應。其中熱線阻值的變化是氣體與熱線之間的能量交換引起的。
“氣體擺”式慣件的敏感機理基于密閉腔體中的能量傳遞,在密閉腔體中有氣體和熱線,熱線是wei一的熱源。當裝置通電時,對氣體加熱。在熱線能量交換中對流是主要形式。
氣體擺式檢測器件的核心敏感元件為熱線。電流流過熱線,熱線產(chǎn)生熱量,使熱線保持一定的溫度。熱線的溫度高于它周圍氣體的溫度,動能增加,所以氣體向上流動。在平衡狀態(tài)時,如圖4(a)所示,熱線處于同一水平面上,上升氣流穿過它們的速度相同,即V1=V1′,這時,氣流對熱線的影響相同,由式(7)可知,流過熱線的電流也相同,電橋平衡。當密閉腔體傾斜時,熱線相對水平面的高度發(fā)生了變化,如圖4(b)所示,因為密閉腔體中氣體的流動是連續(xù)的,所以熱氣流在向上運動的過程中,依次經(jīng)過下部和上部的熱線。若忽略氣體上升過程中克服重力的能量損失,則穿過上部熱線的氣流已經(jīng)與下部熱線的產(chǎn)生熱交換,使穿過兩根熱線時的氣流速度不同,這時V2¢>V2,因此流過兩根熱線的電流也會發(fā)生相應的變化,所以電橋失去平衡,輸出一個電信號。傾斜角度不同,輸出的電信號也不同。
如有需求,請見:綠測器MIDORI傾斜角度傳感器